home *** CD-ROM | disk | FTP | other *** search
- /* Search an insn for pseudo regs that must be in hard regs and are not.
- Copyright (C) 1987, 1988, 1989 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This file contains subroutines used only from the file reload1.c.
- It knows how to scan one insn for operands and values
- that need to be copied into registers to make valid code.
- It also finds other operands and values which are valid
- but for which equivalent values in registers exist and
- ought to be used instead.
-
- Before processing the first insn of the function, call `init_reload'.
-
- To scan an insn, call `find_reloads'. This does two things:
- 1. sets up tables describing which values must be reloaded
- for this insn, and what kind of hard regs they must be reloaded into;
- 2. optionally record the locations where those values appear in
- the data, so they can be replaced properly later.
- This is done only if the second arg to `find_reloads' is nonzero.
-
- The third arg to `find_reloads' specifies the value of `indirect_ok'.
-
- Then you must choose the hard regs to reload those pseudo regs into,
- and generate appropriate load insns before this insn and perhaps
- also store insns after this insn. Set up the array `reload_reg_rtx'
- to contain the REG rtx's for the registers you used. In some
- cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
- for certain reloads. Then that tells you which register to use,
- so you do not need to allocate one. But you still do need to add extra
- instructions to copy the value into and out of that register.
-
- Finally you must call `subst_reloads' to substitute the reload reg rtx's
- into the locations already recorded.
-
- NOTE SIDE EFFECTS:
-
- find_reloads can alter the operands of the instruction it is called on.
-
- 1. Two operands of any sort may be interchanged, if they are in a
- commutative instruction.
- This happens only if find_reloads thinks the instruction will compile
- better that way.
-
- 2. Pseudo-registers that are equivalent to constants are replaced
- with those constants if they are not in hard registers.
-
- 1 happens every time find_reloads is called.
- 2 happens only when REPLACE is 1, which is only when
- actually doing the reloads, not when just counting them.
-
-
- Using a reload register for several reloads in one insn:
-
- When an insn has reloads, it is considered as having three parts:
- the input reloads, the insn itself after reloading, and the output reloads.
- Reloads of values used in memory addresses are often needed for only one part.
-
- When this is so, reload_when_needed records which part needs the reload.
- Two reloads for different parts of the insn can share the same reload
- register.
-
- When a reload is used for addresses in multiple parts, or when it is
- an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
- a register with any other reload. */
-
- #define REG_OK_STRICT
-
- #include "config.h"
- #include "rtl.h"
- #include "insn-config.h"
- #include "recog.h"
- #include "reload.h"
- #include "regs.h"
- #include "hard-reg-set.h"
- #include "flags.h"
- #include "real.h"
-
- /* The variables set up by `find_reloads' are:
-
- n_reloads number of distinct reloads needed; max reload # + 1
- tables indexed by reload number
- reload_in rtx for value to reload from
- reload_out rtx for where to store reload-reg afterward if nec
- (often the same as reload_in)
- reload_reg_class enum reg_class, saying what regs to reload into
- reload_inmode enum machine_mode; mode this operand should have
- when reloaded, on input.
- reload_outmode enum machine_mode; mode this operand should have
- when reloaded, on output.
- reload_strict_low char; 1 if this reload is inside a STRICT_LOW_PART.
- reload_optional char, nonzero for an optional reload.
- Optional reloads are ignored unless the
- value is already sitting in a register.
- reload_inc int, positive amount to increment or decrement by if
- reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
- Ignored otherwise (don't assume it is zero).
- reload_in_reg rtx. A reg for which reload_in is the equivalent.
- If reload_in is a symbol_ref which came from
- reg_equiv_constant, then this is the pseudo
- which has that symbol_ref as equivalent.
- reload_reg_rtx rtx. This is the register to reload into.
- If it is zero when `find_reloads' returns,
- you must find a suitable register in the class
- specified by reload_reg_class, and store here
- an rtx for that register with mode from
- reload_inmode or reload_outmode.
- reload_nocombine char, nonzero if this reload shouldn't be
- combined with another reload.
- reload_needed_for rtx, operand this reload is needed for address of.
- 0 means it isn't needed for addressing.
- reload_needed_for_multiple
- int, 1 if this reload needed for more than one thing.
- reload_when_needed enum, classifies reload as needed either for
- addressing an input reload, addressing an output,
- for addressing a non-reloaded mem ref,
- or for unspecified purposes (i.e., more than one
- of the above). */
-
- int n_reloads;
-
- rtx reload_in[MAX_RELOADS];
- rtx reload_out[MAX_RELOADS];
- enum reg_class reload_reg_class[MAX_RELOADS];
- enum machine_mode reload_inmode[MAX_RELOADS];
- enum machine_mode reload_outmode[MAX_RELOADS];
- char reload_strict_low[MAX_RELOADS];
- rtx reload_reg_rtx[MAX_RELOADS];
- char reload_optional[MAX_RELOADS];
- int reload_inc[MAX_RELOADS];
- rtx reload_in_reg[MAX_RELOADS];
- char reload_nocombine[MAX_RELOADS];
- int reload_needed_for_multiple[MAX_RELOADS];
- rtx reload_needed_for[MAX_RELOADS];
- enum reload_when_needed reload_when_needed[MAX_RELOADS];
-
- /* All the "earlyclobber" operands of the current insn
- are recorded here. */
- int n_earlyclobbers;
- rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
-
- /* Replacing reloads.
-
- If `replace_reloads' is nonzero, then as each reload is recorded
- an entry is made for it in the table `replacements'.
- Then later `subst_reloads' can look through that table and
- perform all the replacements needed. */
-
- /* Nonzero means record the places to replace. */
- static int replace_reloads;
-
- /* Each replacement is recorded with a structure like this. */
- struct replacement
- {
- rtx *where; /* Location to store in */
- int what; /* which reload this is for */
- enum machine_mode mode; /* mode it must have */
- };
-
- static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
-
- /* Number of replacements currently recorded. */
- static int n_replacements;
-
- /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
- (see reg_equiv_address). */
- static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
- static int n_memlocs;
-
- /* The instruction we are doing reloads for;
- so we can test whether a register dies in it. */
- static rtx this_insn;
-
- /* Nonzero means (MEM (REG n)) is valid even if (REG n) is spilled. */
- static int indirect_ok;
-
- /* If hard_regs_live_known is nonzero,
- we can tell which hard regs are currently live,
- at least enough to succeed in choosing dummy reloads. */
- static int hard_regs_live_known;
-
- /* Indexed by hard reg number,
- element is nonegative if hard reg has been spilled.
- This vector is passed to `find_reloads' as an argument
- and is not changed here. */
- static short *static_reload_reg_p;
-
- /* Set to 1 in subst_reg_equivs if it changes anything. */
- static int subst_reg_equivs_changed;
-
- /* On return from push_reload, holds the reload-number for the OUT
- operand, which can be different for that from the input operand. */
- static int output_reloadnum;
-
- static int alternative_allows_memconst ();
- static rtx find_dummy_reload ();
- static rtx find_reloads_toplev ();
- static int find_reloads_address ();
- static int find_reloads_address_1 ();
- static int hard_reg_set_here_p ();
- /* static rtx forget_volatility (); */
- static rtx subst_reg_equivs ();
- static rtx subst_indexed_address ();
- rtx find_equiv_reg ();
- static int find_inc_amount ();
-
- /* Record one (sometimes two) reload that needs to be performed.
- IN is an rtx saying where the data are to be found before this instruction.
- OUT says where they must be stored after the instruction.
- (IN is zero for data not read, and OUT is zero for data not written.)
- INLOC and OUTLOC point to the places in the instructions where
- IN and OUT were found.
- CLASS is a register class required for the reloaded data.
- INMODE is the machine mode that the instruction requires
- for the reg that replaces IN and OUTMODE is likewise for OUT.
-
- If IN is zero, then OUT's location and mode should be passed as
- INLOC and INMODE.
-
- STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
-
- OPTIONAL nonzero means this reload does not need to be performed:
- it can be discarded if that is more convenient.
-
- The return value is the reload-number for this reload.
-
- If both IN and OUT are nonzero, in some rare cases we might
- want to make two separate reloads. (Actually we never do this now.)
- Therefore, the reload-number for OUT is stored in
- output_reloadnum when we return; the return value applies to IN.
- Usually (presently always), when IN and OUT are nonzero,
- the two reload-numbers are equal, but the caller should be careful to
- distinguish them. */
-
- static int
- push_reload (in, out, inloc, outloc, class,
- inmode, outmode, strict_low, optional, needed_for)
- register rtx in, out;
- rtx *inloc, *outloc;
- enum reg_class class;
- enum machine_mode inmode, outmode;
- int strict_low;
- int optional;
- rtx needed_for;
- {
- register int i;
- int dont_share = 0;
-
- /* Compare two RTX's. */
- #define MATCHES(x, y) (x == y || (x != 0 && GET_CODE (x) != REG && rtx_equal_p (x, y)))
-
- /* INMODE and/or OUTMODE could be VOIDmode if no mode
- has been specified for the operand. In that case,
- use the operand's mode as the mode to reload. */
- if (inmode == VOIDmode && in != 0)
- inmode = GET_MODE (in);
- if (outmode == VOIDmode && out != 0)
- outmode = GET_MODE (out);
-
- /* If IN is a pseudo register everywhere-equivalent to a constant, and
- it is not in a hard register, reload straight from the constant,
- since we want to get rid of such pseudo registers.
- Often this is done earlier, but not always in find_reloads_address. */
- if (in != 0 && GET_CODE (in) == REG)
- {
- register int regno = REGNO (in);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- in = reg_equiv_constant[regno];
- }
-
- /* Likewise for OUT. Of course, OUT will never be equivalent to
- an actual constant, but it might be equivalent to a memory location
- (in the case of a parameter). */
- if (out != 0 && GET_CODE (out) == REG)
- {
- register int regno = REGNO (out);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- out = reg_equiv_constant[regno];
- }
-
- /* If we have a read-write operand with an address side-effect,
- change either IN or OUT so the side-effect happens only once. */
- if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
- {
- if (GET_CODE (XEXP (in, 0)) == POST_INC
- || GET_CODE (XEXP (in, 0)) == POST_DEC)
- in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
- if (GET_CODE (XEXP (in, 0)) == PRE_INC
- || GET_CODE (XEXP (in, 0)) == PRE_DEC)
- out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
- }
-
- /* If we are reloading a (SUBREG (MEM ...) ...) or (SUBREG constant ...),
- really reload just the inside expression in its own mode.
- Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
- we can't handle it here because CONST_INT does not indicate a mode. */
-
- if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) != REG)
- {
- inloc = &SUBREG_REG (in);
- in = *inloc;
- if (GET_CODE (SUBREG_REG (in)) == MEM)
- /* This is supposed to happen only for paradoxical subregs made by
- combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
- if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
- abort ();
- inmode = GET_MODE (in);
- }
-
- /* If IN appears in OUT, we can't share any input-only reload for IN. */
- if (in != 0 && out != 0 && reg_overlap_mentioned_p (in, out))
- dont_share = 1;
-
- /* Narrow down the class of register wanted if that is
- desirable on this machine for efficiency. */
- if (in != 0)
- class = PREFERRED_RELOAD_CLASS (in, class);
-
- if (class == NO_REGS)
- abort ();
-
- /* We can use an existing reload if the class is right
- and at least one of IN and OUT is a match
- and the other is at worst neutral.
- (A zero compared against anything is neutral.) */
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_class[i] == class
- && reload_strict_low[i] == strict_low
- && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
- && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
- ||
- (out != 0 && MATCHES (reload_out[i], out)
- && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in)))))
- break;
-
- /* Reloading a plain reg for input can match a reload to postincrement
- that reg, since the postincrement's value is the right value.
- Likewise, it can match a preincrement reload, since we regard
- the preincrementation as happening before any ref in this insn
- to that register. */
- if (i == n_reloads)
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_class[i] == class
- && reload_strict_low[i] == strict_low
- && out == 0 && reload_out[i] == 0
- && ((GET_CODE (in) == REG
- && (GET_CODE (reload_in[i]) == POST_INC
- || GET_CODE (reload_in[i]) == POST_DEC
- || GET_CODE (reload_in[i]) == PRE_INC
- || GET_CODE (reload_in[i]) == PRE_DEC)
- && MATCHES (XEXP (reload_in[i], 0), in))
- ||
- (GET_CODE (reload_in[i]) == REG
- && (GET_CODE (in) == POST_INC
- || GET_CODE (in) == POST_DEC
- || GET_CODE (in) == PRE_INC
- || GET_CODE (in) == PRE_DEC)
- && MATCHES (XEXP (in, 0), reload_in[i]))))
- {
- /* Make sure reload_in ultimately has the increment,
- not the plain register. */
- if (GET_CODE (in) == REG)
- in = reload_in[i];
- break;
- }
-
- if (i == n_reloads)
- {
- /* We found no existing reload suitable for re-use.
- So add an additional reload. */
-
- reload_in[i] = in;
- reload_out[i] = out;
- reload_reg_class[i] = class;
- reload_inmode[i] = inmode;
- reload_outmode[i] = outmode;
- reload_reg_rtx[i] = 0;
- reload_optional[i] = optional;
- reload_inc[i] = 0;
- reload_strict_low[i] = strict_low;
- reload_nocombine[i] = 0;
- reload_in_reg[i] = *inloc;
- reload_needed_for[i] = needed_for;
- reload_needed_for_multiple[i] = 0;
-
- n_reloads++;
- }
- else
- {
- /* We are reusing an existing reload,
- but we may have additional information for it.
- For example, we may now have both IN and OUT
- while the old one may have just one of them. */
-
- if (inmode != VOIDmode)
- reload_inmode[i] = inmode;
- if (outmode != VOIDmode)
- reload_outmode[i] = outmode;
- if (in != 0)
- reload_in[i] = in;
- if (out != 0)
- reload_out[i] = out;
- reload_optional[i] &= optional;
- if (reload_needed_for[i] != needed_for)
- reload_needed_for_multiple[i] = 1;
- }
-
- /* If the ostensible rtx being reload differs from the rtx found
- in the location to substitute, this reload is not safe to combine
- because we cannot reliably tell whether it appears in the insn. */
-
- if (in != 0 && in != *inloc)
- reload_nocombine[i] = 1;
-
- #if 0
- /* This was replaced by changes in find_reloads_address_1 and the new
- function inc_for_reload, which go with a new meaning of reload_inc. */
-
- /* If this is an IN/OUT reload in an insn that sets the CC,
- it must be for an autoincrement. It doesn't work to store
- the incremented value after the insn because that would clobber the CC.
- So we must do the increment of the value reloaded from,
- increment it, store it back, then decrement again. */
- if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
- {
- out = 0;
- reload_out[i] = 0;
- reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
- /* If we did not find a nonzero amount-to-increment-by,
- that contradicts the belief that IN is being incremented
- in an address in this insn. */
- if (reload_inc[i] == 0)
- abort ();
- }
- #endif
-
- /* If we will replace IN and OUT with the reload-reg,
- record where they are located so that substitution need
- not do a tree walk. */
-
- if (replace_reloads)
- {
- if (inloc != 0)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->where = inloc;
- r->mode = inmode;
- }
- if (outloc != 0 && outloc != inloc)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->where = outloc;
- r->mode = outmode;
- }
- }
-
- /* If this reload is just being introduced and it has both
- an incoming quantity and an outgoing quantity that are
- supposed to be made to match, see if either one of the two
- can serve as the place to reload into.
-
- If one of them is acceptable, set reload_reg_rtx[i]
- to that one. */
-
- if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
- {
- reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
- reload_reg_class[i], i);
-
- /* If the outgoing register already contains the same value
- as the incoming one, we can dispense with loading it.
- The easiest way to tell the caller that is to give a phony
- value for the incoming operand (same as outgoing one). */
- if (reload_reg_rtx[i] == out
- && (GET_CODE (in) == REG || CONSTANT_P (in))
- && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
- static_reload_reg_p, i, inmode))
- reload_in[i] = out;
- }
-
- if (out)
- output_reloadnum = i;
-
- return i;
- }
-
- /* Record an additional place we must replace a value
- for which we have already recorded a reload.
- RELOADNUM is the value returned by push_reload
- when the reload was recorded.
- This is used in insn patterns that use match_dup. */
-
- static void
- push_replacement (loc, reloadnum, mode)
- rtx *loc;
- int reloadnum;
- enum machine_mode mode;
- {
- if (replace_reloads)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = reloadnum;
- r->where = loc;
- r->mode = mode;
- }
- }
-
- /* If there is only one output reload, try to combine it
- with a (logically unrelated) input reload
- to reduce the number of reload registers needed.
-
- This is safe if the input reload does not appear in
- the value being output-reloaded, because this implies
- it is not needed any more once the original insn completes. */
-
- static void
- combine_reloads ()
- {
- int i;
- int output_reload = -1;
-
- /* Find the output reload; return unless there is exactly one
- and that one is mandatory. */
-
- for (i = 0; i < n_reloads; i++)
- if (reload_out[i] != 0)
- {
- if (output_reload >= 0)
- return;
- output_reload = i;
- }
-
- if (output_reload < 0 || reload_optional[output_reload])
- return;
-
- /* An input-output reload isn't combinable. */
-
- if (reload_in[output_reload] != 0)
- return;
-
- /* Check each input reload; can we combine it? */
-
- for (i = 0; i < n_reloads; i++)
- if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
- /* Life span of this reload must not extend past main insn. */
- && reload_when_needed[i] != RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
- && reload_inmode[i] == reload_outmode[output_reload]
- && reload_inc[i] == 0
- && reload_reg_rtx[i] == 0
- && reload_strict_low[i] == 0
- && reload_reg_class[i] == reload_reg_class[output_reload]
- && ! reg_overlap_mentioned_p (reload_in[i], reload_out[output_reload]))
- {
- int j;
-
- /* We have found a reload to combine with! */
- reload_out[i] = reload_out[output_reload];
- reload_outmode[i] = reload_outmode[output_reload];
- /* Mark the old output reload as inoperative. */
- reload_out[output_reload] = 0;
- /* The combined reload is needed for the entire insn. */
- reload_needed_for_multiple[i] = 1;
- reload_when_needed[i] = RELOAD_OTHER;
-
- /* Transfer all replacements from the old reload to the combined. */
- for (j = 0; j < n_replacements; j++)
- if (replacements[j].what == output_reload)
- replacements[j].what = i;
-
- return;
- }
- }
-
- /* Try to find a reload register for an in-out reload (expressions IN and OUT).
- See if one of IN and OUT is a register that may be used;
- this is desirable since a spill-register won't be needed.
- If so, return the register rtx that proves acceptable.
-
- INLOC and OUTLOC are locations where IN and OUT appear in the insn.
- CLASS is the register class required for the reload.
-
- If FOR_REAL is >= 0, it is the number of the reload,
- and in some cases when it can be discovered that OUT doesn't need
- to be computed, clear out reload_out[FOR_REAL].
-
- If FOR_REAL is -1, this should not be done, because this call
- is just to see if a register can be found, not to find and install it. */
-
- static rtx
- find_dummy_reload (in, out, inloc, outloc, class, for_real)
- rtx in, out;
- rtx *inloc, *outloc;
- enum reg_class class;
- int for_real;
- {
- rtx value = 0;
- rtx orig_in = in;
-
- while (GET_CODE (out) == SUBREG)
- out = SUBREG_REG (out);
- while (GET_CODE (in) == SUBREG)
- in = SUBREG_REG (in);
-
- /* If operands exceed a word, we can't use either of them
- unless they have the same size. */
- if (GET_MODE_SIZE (GET_MODE (out)) != GET_MODE_SIZE (GET_MODE (in))
- && (GET_MODE_SIZE (GET_MODE (out)) > UNITS_PER_WORD
- || GET_MODE_SIZE (GET_MODE (in)) > UNITS_PER_WORD))
- return 0;
-
- /* See if OUT will do. */
- if (GET_CODE (out) == REG)
- {
- register int regno = REGNO (out);
-
- /* When we consider whether the insn uses OUT,
- ignore references within IN. They don't prevent us
- from copying IN into OUT, because those refs would
- move into the insn that reloads IN.
-
- However, we only ignore IN in its role as this operand.
- If the insn uses IN elsewhere and it contains OUT,
- that counts. We can't be sure it's the "same" operand
- so it might not go through this reload. */
- *inloc = const0_rtx;
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if (regno < FIRST_PSEUDO_REGISTER
- /* A fixed reg that can overlap other regs better not be used
- for reloading in any way. */
- #ifdef OVERLAPPING_REGNO_P
- && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
- #endif
- && ! refers_to_regno_p (regno, regno + HARD_REGNO_NREGS (regno, GET_MODE (out)),
- PATTERN (this_insn), outloc)
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
- value = out;
-
- *inloc = orig_in;
- }
-
- /* Consider using IN if OUT was not acceptable
- or if OUT dies in this insn (like the quotient in a divmod insn).
- We can't use IN unless it is free after this insn,
- which means we must know accurately which hard regs are live.
- Also, the result can't go in IN if IN is used within OUT. */
- if (hard_regs_live_known
- && GET_CODE (in) == REG
- && ! find_reg_note (this_insn, REG_UNSET, in)
- && (value == 0
- || find_regno_note (this_insn, REG_DEAD, REGNO (value))))
- {
- register int regno = REGNO (in);
- if (find_regno_note (this_insn, REG_DEAD, regno))
- {
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if (regno < FIRST_PSEUDO_REGISTER
- && ! refers_to_regno_p (regno,
- regno + HARD_REGNO_NREGS (regno, GET_MODE (in)),
- out, 0)
- && ! hard_reg_set_here_p (regno, PATTERN (this_insn))
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
- {
- /* If we were going to use OUT as the reload reg
- and changed our mind, it means OUT is a dummy that
- dies here. So don't bother copying value to it. */
- if (for_real >= 0 && value == out)
- reload_out[for_real] = 0;
- value = in;
- }
- }
- }
-
- return value;
- }
-
- /* This page contains subroutines used mainly for determining
- whether the IN or an OUT of a reload can serve as the
- reload register. */
-
- /* Return 1 if hard reg number REGNO is stored in by expression X,
- either explicitly or in the guise of a pseudo-reg allocated to REGNO.
- X should be the body of an instruction. */
-
- static int
- hard_reg_set_here_p (regno, x)
- register int regno;
- rtx x;
- {
- if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- {
- register rtx op0 = SET_DEST (x);
- while (GET_CODE (op0) == SUBREG)
- op0 = SUBREG_REG (op0);
- if (GET_CODE (op0) == REG)
- {
- register int r = REGNO (op0);
- /* See if this reg includes the specified one. */
- if (r <= regno && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > regno)
- return 1;
- }
- }
- else if (GET_CODE (x) == PARALLEL)
- {
- register int i = XVECLEN (x, 0) - 1;
- for (; i >= 0; i--)
- if (hard_reg_set_here_p (regno, XVECEXP (x, 0, i)))
- return 1;
- }
-
- return 0;
- }
-
- /* Return 1 if ADDR is a valid memory address for mode MODE,
- and check that each pseudo reg has the proper kind of
- hard reg. */
-
- int
- strict_memory_address_p (mode, addr)
- enum machine_mode mode;
- register rtx addr;
- {
- GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
- return 0;
-
- win:
- return 1;
- }
-
-
- /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
- if they are the same hard reg, and has special hacks for
- autoincrement and autodecrement.
- This is specifically intended for find_reloads to use
- in determining whether two operands match.
- X is the operand whose number is the lower of the two.
-
- The value is 2 if Y contains a pre-increment that matches
- a non-incrementing address in X. */
-
- /* ??? To be completely correct, we should arrange to pass
- for X the output operand and for Y the input operand.
- For now, we assume that the output operand has the lower number
- because that is natural in (SET output (... input ...)). */
-
- int
- operands_match_p (x, y)
- register rtx x, y;
- {
- register int i;
- register RTX_CODE code = GET_CODE (x);
- register char *fmt;
- int success_2;
-
- if (x == y)
- return 1;
- if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
- && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
- && GET_CODE (SUBREG_REG (y)) == REG)))
- {
- register int j;
-
- if (code == SUBREG)
- {
- i = REGNO (SUBREG_REG (x));
- if (i >= FIRST_PSEUDO_REGISTER)
- goto slow;
- i += SUBREG_WORD (x);
- }
- else
- i = REGNO (x);
-
- if (GET_CODE (y) == SUBREG)
- {
- j = REGNO (SUBREG_REG (y));
- if (j >= FIRST_PSEUDO_REGISTER)
- goto slow;
- j += SUBREG_WORD (y);
- }
- else
- j = REGNO (y);
-
- return i == j;
- }
- /* If two operands must match, because they are really a single
- operand of an assembler insn, then two postincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, an postincrement matches ordinary indexing
- if the postincrement is the output operand. */
- if (code == POST_DEC || code == POST_INC)
- return operands_match_p (XEXP (x, 0), y);
- /* Two preincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, an preincrement matches ordinary indexing
- if the preincrement is the input operand.
- In this case, return 2, since some callers need to do special
- things when this happens. */
- if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
- return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
-
- slow:
-
- /* Now we have disposed of all the cases
- in which different rtx codes can match. */
- if (code != GET_CODE (y))
- return 0;
- if (code == LABEL_REF)
- return XEXP (x, 0) == XEXP (y, 0);
- if (code == SYMBOL_REF)
- return XSTR (x, 0) == XSTR (y, 0);
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- success_2 = 0;
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- int val;
- switch (fmt[i])
- {
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'e':
- val = operands_match_p (XEXP (x, i), XEXP (y, i));
- if (val == 0)
- return 0;
- /* If any subexpression returns 2,
- we should return 2 if we are successful. */
- if (val == 2)
- success_2 = 1;
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1 + success_2;
- }
-
- /* Return the number of times character C occurs in string S. */
-
- static int
- n_occurrences (c, s)
- char c;
- char *s;
- {
- int n = 0;
- while (*s)
- n += (*s++ == c);
- return n;
- }
-
- struct decomposition
- {
- int reg_flag;
- int safe;
- rtx base;
- int start;
- int end;
- };
-
- /* Describe the range of registers or memory referenced by X.
- If X is a register, set REG_FLAG and put the first register
- number into START and the last plus one into END.
- If X is a memory reference, put a base address into BASE
- and a range of integer offsets into START and END.
- If X is pushing on the stack, we can assume it causes no trouble,
- so we set the SAFE field. */
-
- static struct decomposition
- decompose (x)
- rtx x;
- {
- struct decomposition val;
- int all_const = 0;
-
- val.reg_flag = 0;
- val.safe = 0;
- if (GET_CODE (x) == MEM)
- {
- rtx base, offset = 0;
- rtx addr = XEXP (x, 0);
-
- if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
- {
- val.base = XEXP (addr, 0);
- val.start = - GET_MODE_SIZE (GET_MODE (x));
- val.end = GET_MODE_SIZE (GET_MODE (x));
- val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
- return val;
- }
-
- if (GET_CODE (addr) == CONST)
- {
- addr = XEXP (addr, 0);
- all_const = 1;
- }
- if (GET_CODE (addr) == PLUS)
- {
- if (CONSTANT_P (XEXP (addr, 0)))
- {
- base = XEXP (addr, 1);
- offset = XEXP (addr, 0);
- }
- else if (CONSTANT_P (XEXP (addr, 1)))
- {
- base = XEXP (addr, 0);
- offset = XEXP (addr, 1);
- }
- }
-
- if (offset == 0)
- {
- base = addr;
- offset = const0_rtx;
- }
- if (GET_CODE (offset) == CONST)
- offset = XEXP (offset, 0);
- if (GET_CODE (offset) == PLUS)
- {
- if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
- offset = XEXP (offset, 0);
- }
- else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
- offset = XEXP (offset, 1);
- }
- else
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
- }
- else if (GET_CODE (offset) != CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
-
- if (all_const && GET_CODE (base) == PLUS)
- base = gen_rtx (CONST, GET_MODE (base), base);
-
- if (GET_CODE (offset) != CONST_INT)
- abort ();
-
- val.start = INTVAL (offset);
- val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
- val.base = base;
- return val;
- }
- else if (GET_CODE (x) == REG)
- {
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0)
- {
- /* A pseudo with no hard reg. */
- val.start = REGNO (x);
- val.end = val.start + 1;
- }
- else
- /* A hard reg. */
- val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
- }
- else if (GET_CODE (x) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (x)) != REG)
- /* This could be more precise, but it's good enough. */
- return decompose (SUBREG_REG (x));
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0)
- return decompose (SUBREG_REG (x));
- else
- /* A hard reg. */
- val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
- }
- else
- abort ();
- return val;
- }
-
- /* Return 1 if altering Y will not modify the value of X.
- Y is also described by YDATA, which should be decompose (Y). */
-
- static int
- immune_p (x, y, ydata)
- rtx x, y;
- struct decomposition ydata;
- {
- struct decomposition xdata;
-
- if (ydata.reg_flag)
- return !refers_to_regno_p (ydata.start, ydata.end, x, 0);
- if (ydata.safe)
- return 1;
-
- if (GET_CODE (y) != MEM)
- abort ();
- /* If Y is memory and X is not, Y can't affect X. */
- if (GET_CODE (x) != MEM)
- return 1;
-
- xdata = decompose (x);
-
- if (! rtx_equal_p (xdata.base, ydata.base))
- {
- /* If bases are distinct symbolic constants, there is no overlap. */
- if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
- return 1;
- /* Constants and stack slots never overlap. */
- if (CONSTANT_P (xdata.base)
- && (ydata.base == frame_pointer_rtx
- || ydata.base == stack_pointer_rtx))
- return 1;
- if (CONSTANT_P (ydata.base)
- && (xdata.base == frame_pointer_rtx
- || xdata.base == stack_pointer_rtx))
- return 1;
- /* If either base is variable, we don't know anything. */
- return 0;
- }
-
-
- return (xdata.start >= ydata.end || ydata.start >= xdata.end);
- }
-
- /* Main entry point of this file: search the body of INSN
- for values that need reloading and record them with push_reload.
- REPLACE nonzero means record also where the values occur
- so that subst_reloads can be used.
- IND_OK says that a memory reference is a valid memory address.
-
- LIVE_KNOWN says we have valid information about which hard
- regs are live at each point in the program; this is true when
- we are called from global_alloc but false when stupid register
- allocation has been done.
-
- RELOAD_REG_P if nonzero is a vector indexed by hard reg number
- which is nonnegative if the reg has been commandeered for reloading into.
- It is copied into STATIC_RELOAD_REG_P and referenced from there
- by various subroutines. */
-
- void
- find_reloads (insn, replace, ind_ok, live_known, reload_reg_p)
- rtx insn;
- int replace, ind_ok;
- int live_known;
- short *reload_reg_p;
- {
- #ifdef REGISTER_CONSTRAINTS
-
- enum reload_modified { RELOAD_NOTHING, RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE };
-
- register int insn_code_number;
- register int i;
- int noperands;
- /* These are the constraints for the insn. We don't change them. */
- char *constraints1[MAX_RECOG_OPERANDS];
- /* These start out as the constraints for the insn
- and they are chewed up as we consider alternatives. */
- char *constraints[MAX_RECOG_OPERANDS];
- /* Nonzero for a MEM operand whose entire address needs a reload. */
- int address_reloaded[MAX_RECOG_OPERANDS];
- int n_alternatives;
- int this_alternative[MAX_RECOG_OPERANDS];
- char this_alternative_win[MAX_RECOG_OPERANDS];
- char this_alternative_offmemok[MAX_RECOG_OPERANDS];
- char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int this_alternative_matches[MAX_RECOG_OPERANDS];
- int swapped;
- int goal_alternative[MAX_RECOG_OPERANDS];
- int this_alternative_number;
- int goal_alternative_number;
- int operand_reloadnum[MAX_RECOG_OPERANDS];
- int goal_alternative_matches[MAX_RECOG_OPERANDS];
- int goal_alternative_matched[MAX_RECOG_OPERANDS];
- char goal_alternative_win[MAX_RECOG_OPERANDS];
- char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
- char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int goal_alternative_swapped;
- enum reload_modified modified[MAX_RECOG_OPERANDS];
- int best;
- int commutative;
- char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
- rtx substed_operand[MAX_RECOG_OPERANDS];
- rtx body = PATTERN (insn);
- int goal_earlyclobber, this_earlyclobber;
- enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
-
- this_insn = insn;
- n_reloads = 0;
- n_replacements = 0;
- n_memlocs = 0;
- n_earlyclobbers = 0;
- replace_reloads = replace;
- indirect_ok = ind_ok;
- hard_regs_live_known = live_known;
- static_reload_reg_p = reload_reg_p;
-
- /* Find what kind of insn this is. NOPERANDS gets number of operands.
- Make OPERANDS point to a vector of operand values.
- Make OPERAND_LOCS point to a vector of pointers to
- where the operands were found.
- Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
- constraint-strings for this insn.
- Return if the insn needs no reload processing. */
-
- switch (GET_CODE (body))
- {
- case USE:
- case CLOBBER:
- case ASM_INPUT:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- case SET:
- /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs. */
- if (GET_CODE (SET_DEST (body)) == REG
- && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
- && GET_CODE (SET_SRC (body)) == REG
- && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER)
- return;
- case PARALLEL:
- case ASM_OPERANDS:
- noperands = asm_noperands (body);
- if (noperands >= 0)
- {
- /* This insn is an `asm' with operands. */
-
- insn_code_number = -1;
-
- /* expand_asm_operands makes sure there aren't too many operands. */
- if (noperands > MAX_RECOG_OPERANDS)
- abort ();
-
- /* Now get the operand values and constraints out of the insn. */
-
- decode_asm_operands (body, recog_operand, recog_operand_loc,
- constraints, operand_mode);
- if (noperands > 0)
- {
- bcopy (constraints, constraints1, noperands * sizeof (char *));
- n_alternatives = n_occurrences (',', constraints[0]) + 1;
- for (i = 1; i < noperands; i++)
- if (n_alternatives != n_occurrences (',', constraints[0]) + 1)
- {
- error_for_asm (insn, "operand constraints differ in number of alternatives");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
- }
- break;
- }
-
- default:
- /* Ordinary insn: recognize it, allocate space for operands and
- constraints, and get them out via insn_extract. */
-
- insn_code_number = recog_memoized (insn);
- noperands = insn_n_operands[insn_code_number];
- n_alternatives = insn_n_alternatives[insn_code_number];
- /* Just return "no reloads" if insn has no operands with constraints. */
- if (n_alternatives == 0)
- return;
- insn_extract (insn);
- for (i = 0; i < noperands; i++)
- {
- constraints[i] = constraints1[i]
- = insn_operand_constraint[insn_code_number][i];
- operand_mode[i] = insn_operand_mode[insn_code_number][i];
- }
- }
-
- if (noperands == 0)
- return;
-
- commutative = -1;
-
- /* If we will need to know, later, whether some pair of operands
- are the same, we must compare them now and save the result.
- Reloading the base and index registers will clobber them
- and afterward they will fail to match. */
-
- for (i = 0; i < noperands; i++)
- {
- register char *p;
- register int c;
-
- substed_operand[i] = recog_operand[i];
- p = constraints[i];
-
- /* Scan this operand's constraint to see if it should match another. */
-
- while (c = *p++)
- if (c == '%')
- commutative = i;
- else if (c >= '0' && c <= '9')
- {
- c -= '0';
- operands_match[c][i]
- = operands_match_p (recog_operand[c], recog_operand[i]);
- /* If C can be commuted with C+1, and C might need to match I,
- then C+1 might also need to match I. */
- if (commutative >= 0)
- {
- if (c == commutative || c == commutative + 1)
- {
- int other = c + (c == commutative ? 1 : -1);
- operands_match[other][i]
- = operands_match_p (recog_operand[other], recog_operand[i]);
- }
- if (i == commutative || i == commutative + 1)
- {
- int other = i + (i == commutative ? 1 : -1);
- operands_match[c][other]
- = operands_match_p (recog_operand[c], recog_operand[other]);
- }
- /* Note that C is supposed to be less than I.
- No need to consider altering both C and I
- because in that case we would alter one into the other. */
- }
- }
- }
-
- /* Examine each operand that is a memory reference or memory address
- and reload parts of the addresses into index registers.
- While we are at it, initialize the array `modified'.
- Also here any references to pseudo regs that didn't get hard regs
- but are equivalent to constants get replaced in the insn itself
- with those constants. Nobody will ever see them again. */
-
- for (i = 0; i < noperands; i++)
- {
- register RTX_CODE code = GET_CODE (recog_operand[i]);
- modified[i] = RELOAD_READ;
- address_reloaded[i] = 0;
- if (constraints[i][0] == 'p')
- {
- find_reloads_address (VOIDmode, 0,
- recog_operand[i], recog_operand_loc[i],
- recog_operand[i]);
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- else if (code == MEM)
- {
- if (find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- recog_operand[i]))
- address_reloaded[i] = 1;
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- else if (code == SUBREG)
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
- = find_reloads_toplev (recog_operand[i]);
- else if (code == REG)
- {
- /* This is equivalent to calling find_reloads_toplev.
- The code is duplicated for speed. */
- register int regno = REGNO (recog_operand[i]);
- if (reg_equiv_constant[regno] != 0)
- substed_operand[i] = recog_operand[i]
- = reg_equiv_constant[regno];
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- substed_operand[i] = recog_operand[i]
- = reg_equiv_mem[regno];
- #endif
- if (reg_equiv_address[regno] != 0)
- {
- *recog_operand_loc[i] = recog_operand[i]
- = gen_rtx (MEM, GET_MODE (recog_operand[i]),
- reg_equiv_address[regno]);
- find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- recog_operand[i]);
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- }
- }
-
- /* Now see what we need for pseudo-regs that didn't get hard regs
- or got the wrong kind of hard reg. For this, we must consider
- all the operands together against the register constraints. */
-
- best = MAX_RECOG_OPERANDS + 100;
-
- swapped = 0;
- try_swapped:
-
- /* The constraints are made of several alternatives.
- Each operand's constraint looks like foo,bar,... with commas
- separating the alternatives. The first alternatives for all
- operands go together, the second alternatives go together, etc.
-
- First loop over alternatives. */
-
- for (this_alternative_number = 0;
- this_alternative_number < n_alternatives;
- this_alternative_number++)
- {
- /* Loop over operands for one constraint alternative. */
- /* LOSERS counts those that don't fit this alternative
- and would require loading. */
- int losers = 0;
- /* BAD is set to 1 if it some operand can't fit this alternative
- even after reloading. */
- int bad = 0;
- /* REJECT is a count of how undesirable this alternative says it is
- if any reloading is required. If the alternative matches exactly
- then REJECT is ignored, but otherwise it gets this much
- counted against it in addition to the reloading needed. */
- int reject = 0;
-
- this_earlyclobber = 0;
-
- for (i = 0; i < noperands; i++)
- {
- register char *p = constraints[i];
- register int win = 0;
- /* 0 => this operand can be reloaded somehow for this alternative */
- int badop = 1;
- /* 0 => this operand can be reloaded if the alternative allows regs. */
- int winreg = 0;
- int c;
- register rtx operand = recog_operand[i];
- int offset = 0;
- /* Nonzero means this is a MEM that must be reloaded into a reg
- regardless of what the constraint says. */
- int force_reload = 0;
- int offmemok = 0;
- int earlyclobber = 0;
-
- /* If the operand is a SUBREG, extract
- the REG or MEM (or maybe even a constant) within.
- (Constants can occur as a result of reg_equiv_constant.) */
-
- while (GET_CODE (operand) == SUBREG)
- {
- offset += SUBREG_WORD (operand);
- operand = SUBREG_REG (operand);
- if (GET_CODE (operand) != REG)
- force_reload = 1;
- }
-
- this_alternative[i] = (int) NO_REGS;
- this_alternative_win[i] = 0;
- this_alternative_offmemok[i] = 0;
- this_alternative_earlyclobber[i] = 0;
- this_alternative_matches[i] = -1;
-
- /* An empty constraint or empty alternative
- allows anything which matched the pattern. */
- if (*p == 0 || *p == ',')
- win = 1, badop = 0;
-
- /* Scan this alternative's specs for this operand;
- set WIN if the operand fits any letter in this alternative.
- Otherwise, clear BADOP if this operand could
- fit some letter after reloads,
- or set WINREG if this operand could fit after reloads
- provided the constraint allows some registers. */
-
- while (*p && (c = *p++) != ',')
- switch (c)
- {
- case '=':
- modified[i] = RELOAD_WRITE;
- break;
-
- case '+':
- modified[i] = RELOAD_READ_WRITE;
- break;
-
- case '*':
- break;
-
- case '%':
- commutative = i;
- break;
-
- case '?':
- reject++;
- break;
-
- case '!':
- reject = 100;
- break;
-
- case '#':
- /* Ignore rest of this alternative as far as
- reloading is concerned. */
- while (*p && *p != ',') p++;
- break;
-
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- c -= '0';
- this_alternative_matches[i] = c;
- /* We are supposed to match a previous operand.
- If we do, we win if that one did.
- If we do not, count both of the operands as losers.
- (This is too conservative, since most of the time
- only a single reload insn will be needed to make
- the two operands win. As a result, this alternative
- may be rejected when it is actually desirable.) */
- if ((swapped && (c != commutative || i != commutative + 1))
- /* If we are matching as if two operands were swapped,
- also pretend that operands_match had been computed
- with swapped.
- But if I is the second of those and C is the first,
- don't exchange them, because operands_match is valid
- only on one side of its diagonal. */
- ? (operands_match
- [(c == commutative || c == commutative + 1)
- ? 2*commutative + 1 - c : c]
- [(i == commutative || i == commutative + 1)
- ? 2*commutative + 1 - i : i])
- : operands_match[c][i])
- win = this_alternative_win[c];
- else
- {
- /* Operands don't match. */
- rtx value;
- /* Retroactively mark the operand we had to match
- as a loser, if it wasn't already. */
- if (this_alternative_win[c])
- losers++;
- this_alternative_win[c] = 0;
- if (this_alternative[c] == (int) NO_REGS)
- bad = 1;
- /* But count the pair only once in the total badness of
- this alternative, if the pair can be a dummy reload. */
- value
- = find_dummy_reload (recog_operand[i], recog_operand[c],
- recog_operand_loc[i], recog_operand_loc[c],
- this_alternative[c], -1);
-
- if (value != 0)
- losers--;
- }
- /* This can be fixed with reloads if the operand
- we are supposed to match can be fixed with reloads. */
- badop = 0;
- this_alternative[i] = this_alternative[c];
- break;
-
- case 'p':
- /* All necessary reloads for an address_operand
- were handled in find_reloads_address. */
- this_alternative[i] = (int) ALL_REGS;
- win = 1;
- break;
-
- case 'm':
- if (force_reload)
- break;
- if (GET_CODE (operand) == MEM
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0))
- win = 1;
- if (GET_CODE (operand) == CONST_DOUBLE
- || CONSTANT_P (operand))
- badop = 0;
- break;
-
- case '<':
- if (GET_CODE (operand) == MEM
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
- || GET_CODE (XEXP (operand, 0)) == POST_DEC))
- win = 1;
- break;
-
- case '>':
- if (GET_CODE (operand) == MEM
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_INC
- || GET_CODE (XEXP (operand, 0)) == POST_INC))
- win = 1;
- break;
-
- /* Memory operand whose address is offsettable. */
- case 'o':
- if (force_reload)
- break;
- if ((GET_CODE (operand) == MEM
- && offsettable_memref_p (operand))
- /* Certain mem addresses will become offsettable
- after they themselves are reloaded. This is important;
- we don't want our own handling of unoffsettables
- to override the handling of reg_equiv_address. */
- || (GET_CODE (operand) == MEM
- && GET_CODE (XEXP (operand, 0)) == REG
- && (! ind_ok
- || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0))
- win = 1;
- if (GET_CODE (operand) == CONST_DOUBLE
- || CONSTANT_P (operand)
- || GET_CODE (operand) == MEM)
- badop = 0;
- offmemok = 1;
- break;
-
- case '&':
- /* Output operand that is stored before the need for the
- input operands (and their index registers) is over. */
- if (GET_CODE (operand) == REG
- || GET_CODE (operand) == MEM)
- earlyclobber = 1, this_earlyclobber = 1;
- break;
-
- case 'F':
- if (GET_CODE (operand) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'G':
- case 'H':
- if (GET_CODE (operand) == CONST_DOUBLE
- && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
- win = 1;
- break;
-
- case 's':
- if (GET_CODE (operand) == CONST_INT)
- break;
- case 'i':
- if (CONSTANT_P (operand))
- win = 1;
- break;
-
- case 'n':
- if (GET_CODE (operand) == CONST_INT)
- win = 1;
- break;
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- if (GET_CODE (operand) == CONST_INT
- && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
- win = 1;
- break;
-
- case 'g':
- if (! force_reload
- && (GENERAL_REGS == ALL_REGS
- || GET_CODE (operand) != REG
- || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0)))
- win = 1;
- /* Drop through into 'r' case */
-
- case 'r':
- this_alternative[i]
- = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
- goto reg;
-
- default:
- this_alternative[i]
- = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
-
- reg:
- winreg = 1;
- if (GET_CODE (operand) == REG
- && reg_fits_class_p (operand, this_alternative[i],
- offset, GET_MODE (recog_operand[i])))
- win = 1;
- break;
- }
-
- constraints[i] = p;
-
- /* If this operand could be handled with a reg,
- and some reg is allowed, then this operand can be handled. */
- if (winreg && this_alternative[i] != (int) NO_REGS)
- badop = 0;
-
- /* Record which operands fit this alternative. */
- this_alternative_earlyclobber[i] = earlyclobber;
- if (win && ! force_reload)
- this_alternative_win[i] = 1;
- else
- {
- this_alternative_offmemok[i] = offmemok;
- losers++;
- if (badop)
- bad = 1;
- /* Alternative loses if it has no regs for a reg operand. */
- if (GET_CODE (operand) == REG
- && this_alternative[i] == (int) NO_REGS
- && this_alternative_matches[i] < 0)
- bad = 1;
- }
- }
-
- /* Now see if any output operands that are marked "earlyclobber"
- in this alternative conflict with any input operands
- or any memory addresses. */
-
- for (i = 0; i < noperands; i++)
- if (this_alternative_earlyclobber[i]
- && this_alternative_win[i])
- {
- struct decomposition early_data;
- int j;
-
- early_data = decompose (recog_operand[i]);
-
- for (j = 0; j < noperands; j++)
- /* Is this an input operand or a memory ref? */
- if ((GET_CODE (recog_operand[j]) == MEM
- || modified[j] != RELOAD_WRITE)
- && j != i
- /* Don't count an input operand that is constrained to match
- the early clobber operand. */
- && ! (this_alternative_matches[j] == i
- && rtx_equal_p (recog_operand[i], recog_operand[j]))
- /* Is it altered by storing the earlyclobber operand? */
- && !immune_p (recog_operand[j], recog_operand[i], early_data))
- {
- /* If the output is in a single-reg class,
- it's costly to reload it, so reload the input instead. */
- if (reg_class_size[this_alternative[i]] == 1
- && (GET_CODE (recog_operand[j]) == REG
- || GET_CODE (recog_operand[j]) == SUBREG))
- {
- losers++;
- this_alternative_win[j] = 0;
- }
- else
- break;
- }
- /* If an earlyclobber operand conflicts with something,
- it must be reloaded, so request this and count the cost. */
- if (j != noperands)
- {
- losers++;
- this_alternative_win[i] = 0;
- for (j = 0; j < noperands; j++)
- if (this_alternative_matches[j] == i
- && this_alternative_win[j])
- {
- this_alternative_win[j] = 0;
- losers++;
- }
- }
- }
-
- /* If one alternative accepts all the operands, no reload required,
- choose that alternative; don't consider the remaining ones. */
- if (losers == 0)
- {
- /* Unswap these so that they are never swapped at `finish'. */
- if (commutative >= 0)
- {
- recog_operand[commutative] = substed_operand[commutative];
- recog_operand[commutative + 1]
- = substed_operand[commutative + 1];
- }
- for (i = 0; i < noperands; i++)
- {
- goal_alternative_win[i] = 1;
- goal_alternative[i] = this_alternative[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_number = this_alternative_number;
- goal_alternative_swapped = swapped;
- goal_earlyclobber = this_earlyclobber;
- goto finish;
- }
-
- /* REJECT, set by the ! and ? constraint characters,
- discourages the use of this alternative for a reload goal. */
- if (reject > 0)
- losers += reject;
-
- /* If this alternative can be made to work by reloading,
- and it needs less reloading than the others checked so far,
- record it as the chosen goal for reloading. */
- if (! bad && best > losers)
- {
- for (i = 0; i < noperands; i++)
- {
- goal_alternative[i] = this_alternative[i];
- goal_alternative_win[i] = this_alternative_win[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_swapped = swapped;
- best = losers;
- goal_alternative_number = this_alternative_number;
- goal_earlyclobber = this_earlyclobber;
- }
- }
-
- /* If insn is commutative (it's safe to exchange a certain pair of operands)
- then we need to try each alternative twice,
- the second time matching those two operands
- as if we had exchanged them.
- To do this, really exchange them in operands.
-
- If we have just tried the alternatives the second time,
- return operands to normal and drop through. */
-
- if (commutative >= 0)
- {
- swapped = !swapped;
- if (swapped)
- {
- recog_operand[commutative] = substed_operand[commutative + 1];
- recog_operand[commutative + 1] = substed_operand[commutative];
-
- bcopy (constraints1, constraints, noperands * sizeof (char *));
- goto try_swapped;
- }
- else
- {
- recog_operand[commutative] = substed_operand[commutative];
- recog_operand[commutative + 1] = substed_operand[commutative + 1];
- }
- }
-
- /* The operands don't meet the constraints.
- goal_alternative describes the alternative
- that we could reach by reloading the fewest operands.
- Reload so as to fit it. */
-
- if (best == MAX_RECOG_OPERANDS + 100)
- {
- /* No alternative works with reloads?? */
- if (insn_code_number >= 0)
- abort ();
- error_for_asm (insn, "inconsistent operand constraints in an `asm'");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
-
- /* Jump to `finish' from above if all operands are valid already.
- In that case, goal_alternative_win is all 1. */
- finish:
-
- /* Right now, for any pair of operands I and J that are required to match,
- with I < J,
- goal_alternative_matches[J] is I.
- Set up goal_alternative_matched as the inverse function:
- goal_alternative_matched[I] = J. */
-
- for (i = 0; i < noperands; i++)
- goal_alternative_matched[i] = -1;
-
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && goal_alternative_matches[i] >= 0)
- goal_alternative_matched[goal_alternative_matches[i]] = i;
-
- /* If the best alternative is with operands 1 and 2 swapped,
- consider them swapped before reporting the reloads. */
-
- if (goal_alternative_swapped)
- {
- register rtx tem;
-
- tem = substed_operand[commutative];
- substed_operand[commutative] = substed_operand[commutative + 1];
- substed_operand[commutative + 1] = tem;
- tem = recog_operand[commutative];
- recog_operand[commutative] = recog_operand[commutative + 1];
- recog_operand[commutative + 1] = tem;
- }
-
- /* Perform whatever substitutions on the operands we are supposed
- to make due to commutativity or replacement of registers
- with equivalent constants or memory slots. */
-
- for (i = 0; i < noperands; i++)
- {
- *recog_operand_loc[i] = substed_operand[i];
- /* While we are looping on operands, initialize this. */
- operand_reloadnum[i] = -1;
- }
-
- /* Any constants that aren't allowed and can't be reloaded
- into memory locations are here changed into memory references. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && (GET_CODE (recog_operand[i]) == CONST_DOUBLE
- || CONSTANT_P (recog_operand[i]))
- && (PREFERRED_RELOAD_CLASS (recog_operand[i],
- (enum reg_class) goal_alternative[i])
- == NO_REGS))
- {
- enum machine_mode mode = operand_mode[i];
- *recog_operand_loc[i] = recog_operand[i]
- = (GET_CODE (recog_operand[i]) == CONST_DOUBLE
- ? force_const_double_mem (recog_operand[i])
- : force_const_mem (mode != VOIDmode ? mode : SImode,
- recog_operand[i]));
- find_reloads_toplev (recog_operand[i]);
- if (alternative_allows_memconst (constraints1[i], goal_alternative_number))
- goal_alternative_win[i] = 1;
- }
-
- /* Now record reloads for all the operands that need them. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i])
- {
- /* Operands that match previous ones have already been handled. */
- if (goal_alternative_matches[i] >= 0)
- ;
- /* Handle an operand with a nonoffsettable address
- appearing where an offsettable address will do
- by reloading the address into a base register. */
- else if (goal_alternative_matched[i] == -1
- && goal_alternative_offmemok[i]
- && GET_CODE (recog_operand[i]) == MEM)
- {
- operand_reloadnum[i]
- = push_reload (XEXP (recog_operand[i], 0), 0,
- &XEXP (recog_operand[i], 0), 0,
- BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
- 0, 0, 0, 0);
- reload_inc[operand_reloadnum[i]]
- = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
- }
- else if (goal_alternative_matched[i] == -1)
- operand_reloadnum[i] =
- push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
- modified[i] != RELOAD_READ ? recog_operand[i] : 0,
- recog_operand_loc[i], 0,
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_operand_strict_low[insn_code_number][i]),
- 0, 0);
- /* In a matching pair of operands, one must be input only
- and the other must be output only.
- Pass the input operand as IN and the other as OUT. */
- else if (modified[i] == RELOAD_READ
- && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
- {
- operand_reloadnum[i]
- = push_reload (recog_operand[i],
- recog_operand[goal_alternative_matched[i]],
- recog_operand_loc[i],
- recog_operand_loc[goal_alternative_matched[i]],
- (enum reg_class) goal_alternative[i],
- operand_mode[i],
- operand_mode[goal_alternative_matched[i]],
- VOIDmode, 0, 0);
- operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
- }
- else if (modified[i] == RELOAD_WRITE
- && modified[goal_alternative_matched[i]] == RELOAD_READ)
- {
- operand_reloadnum[goal_alternative_matched[i]]
- = push_reload (recog_operand[goal_alternative_matched[i]],
- recog_operand[i],
- recog_operand_loc[goal_alternative_matched[i]],
- recog_operand_loc[i],
- (enum reg_class) goal_alternative[i],
- operand_mode[goal_alternative_matched[i]],
- operand_mode[i],
- VOIDmode, 0, 0);
- operand_reloadnum[i] = output_reloadnum;
- }
- else if (insn_code_number >= 0)
- abort ();
- else
- {
- error_for_asm (insn, "inconsistent operand constraints in an `asm'");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
- }
- else if (goal_alternative_matched[i] < 0
- && goal_alternative_matches[i] < 0
- && optimize)
- {
- rtx operand = recog_operand[i];
- /* For each non-matching operand that's a pseudo-register
- that didn't get a hard register, make an optional reload.
- This may get done even if the insn needs no reloads otherwise. */
- /* (It would be safe to make an optional reload for a matching pair
- of operands, but we don't bother yet.) */
- while (GET_CODE (operand) == SUBREG)
- operand = XEXP (operand, 0);
- if (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0
- && (enum reg_class) goal_alternative[i] != NO_REGS
- /* Don't make optional output reloads for jump insns
- (such as aobjeq on the vax). */
- && (modified[i] == RELOAD_READ
- || GET_CODE (insn) != JUMP_INSN))
- operand_reloadnum[i]
- = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
- modified[i] != RELOAD_READ ? recog_operand[i] : 0,
- recog_operand_loc[i], 0,
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_operand_strict_low[insn_code_number][i]),
- 1, 0);
- /* Make an optional reload for an explicit mem ref. */
- else if (GET_CODE (operand) == MEM
- && (enum reg_class) goal_alternative[i] != NO_REGS
- /* Don't make optional output reloads for jump insns
- (such as aobjeq on the vax). */
- && (modified[i] == RELOAD_READ
- || GET_CODE (insn) != JUMP_INSN))
- operand_reloadnum[i]
- = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
- modified[i] != RELOAD_READ ? recog_operand[i] : 0,
- recog_operand_loc[i], 0,
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_operand_strict_low[insn_code_number][i]),
- 1, 0);
- }
-
- /* Record the values of the earlyclobber operands for the caller. */
- if (goal_earlyclobber)
- for (i = 0; i < noperands; i++)
- if (goal_alternative_earlyclobber[i])
- reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
-
- /* If this insn pattern contains any MATCH_DUP's, make sure that
- they will be substituted if the operands they match are substituted.
- Also do now any substitutions we already did on the operands. */
- if (insn_code_number >= 0)
- for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
- {
- int opno = recog_dup_num[i];
- *recog_dup_loc[i] = *recog_operand_loc[opno];
- if (operand_reloadnum[opno] >= 0)
- push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
- insn_operand_mode[insn_code_number][opno]);
- }
-
- #if 0
- /* This loses because reloading of prior insns can invalidate the equivalence
- (or at least find_equiv_reg isn't smart enough to find it any more),
- causing this insn to need more reload regs than it needed before.
- It may be too late to make the reload regs available.
- Now this optimization is done safely in choose_reload_targets. */
-
- /* For each reload of a reg into some other class of reg,
- search for an existing equivalent reg (same value now) in the right class.
- We can use it as long as we don't need to change its contents. */
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_rtx[i] == 0
- && reload_in[i] != 0
- && GET_CODE (reload_in[i]) == REG
- && reload_out[i] == 0)
- {
- reload_reg_rtx[i]
- = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
- static_reload_reg_p, 0, reload_inmode[i]);
- /* Prevent generation of insn to load the value
- because the one we found already has the value. */
- if (reload_reg_rtx[i])
- reload_in[i] = reload_reg_rtx[i];
- }
- #endif
-
- #else /* no REGISTER_CONSTRAINTS */
- int noperands;
- int insn_code_number;
- int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
- register int i;
- rtx body = PATTERN (insn);
-
- n_reloads = 0;
- n_replacements = 0;
- n_earlyclobbers = 0;
- replace_reloads = replace;
- indirect_ok = ind_ok;
- this_insn = insn;
-
- /* Find what kind of insn this is. NOPERANDS gets number of operands.
- Store the operand values in RECOG_OPERAND and the locations
- of the words in the insn that point to them in RECOG_OPERAND_LOC.
- Return if the insn needs no reload processing. */
-
- switch (GET_CODE (body))
- {
- case USE:
- case CLOBBER:
- case ASM_INPUT:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- case PARALLEL:
- case SET:
- noperands = asm_noperands (body);
- if (noperands >= 0)
- {
- /* This insn is an `asm' with operands.
- First, find out how many operands, and allocate space. */
-
- insn_code_number = -1;
- /* ??? This is a bug! ???
- Give up and delete this insn if it has too many operands. */
- if (noperands > MAX_RECOG_OPERANDS)
- abort ();
-
- /* Now get the operand values out of the insn. */
-
- decode_asm_operands (body, recog_operand, recog_operand_loc, 0, 0);
- break;
- }
-
- default:
- /* Ordinary insn: recognize it, allocate space for operands and
- constraints, and get them out via insn_extract. */
-
- insn_code_number = recog_memoized (insn);
- noperands = insn_n_operands[insn_code_number];
- insn_extract (insn);
- }
-
- if (noperands == 0)
- return;
-
- for (i = 0; i < noperands; i++)
- {
- register RTX_CODE code = GET_CODE (recog_operand[i]);
-
- if (insn_code_number >= 0)
- if (insn_operand_address_p[insn_code_number][i])
- find_reloads_address (VOIDmode, 0,
- recog_operand[i], recog_operand_loc[i],
- recog_operand[i]);
- if (code == MEM)
- find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- recog_operand[i]);
- if (code == SUBREG)
- recog_operand[i] = *recog_operand_loc[i]
- = find_reloads_toplev (recog_operand[i]);
- if (code == REG)
- {
- register int regno = REGNO (recog_operand[i]);
- if (reg_equiv_constant[regno] != 0)
- recog_operand[i] = *recog_operand_loc[i]
- = reg_equiv_constant[regno];
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- recog_operand[i] = *recog_operand_loc[i]
- = reg_equiv_mem[regno];
- #endif
- }
- }
- #endif /* no REGISTER_CONSTRAINTS */
-
- /* Determine which part of the insn each reload is needed for,
- based on which operand the reload is needed for.
- Reloads of entire operands are classified as RELOAD_OTHER.
- So are reloads for which a unique purpose is not known. */
-
- for (i = 0; i < n_reloads; i++)
- {
- reload_when_needed[i] = RELOAD_OTHER;
-
- if (reload_needed_for[i] != 0 && ! reload_needed_for_multiple[i])
- {
- int j;
- int output_address = 0;
- int input_address = 0;
- int operand_address = 0;
-
- /* This reload is needed only for the address of something.
- Determine whether it is needed for addressing an operand
- being reloaded for input, whether it is needed for an
- operand being reloaded for output, and whether it is needed
- for addressing an operand that won't really be reloaded. */
-
- for (j = 0; j < n_reloads; j++)
- if (reload_needed_for[i] == reload_in[j]
- || reload_needed_for[i] == reload_out[j])
- {
- if (reload_optional[j])
- operand_address = 1;
- else
- {
- if (reload_needed_for[i] == reload_in[j])
- input_address = 1;
- if (reload_needed_for[i] == reload_out[j])
- output_address = 1;
- }
- }
-
- /* If it is needed for only one of those, record which one. */
-
- if (input_address && ! output_address && ! operand_address)
- reload_when_needed[i] = RELOAD_FOR_INPUT_RELOAD_ADDRESS;
- if (output_address && ! input_address && ! operand_address)
- reload_when_needed[i] = RELOAD_FOR_OUTPUT_RELOAD_ADDRESS;
- if (operand_address && ! input_address && ! output_address)
- reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
- }
- }
-
- /* Perhaps an output reload can be combined with another
- to reduce needs by one. */
- if (!goal_earlyclobber)
- combine_reloads ();
- }
-
- /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
- accepts a memory operand with constant address. */
-
- static int
- alternative_allows_memconst (constraint, altnum)
- char *constraint;
- int altnum;
- {
- register int c;
- /* Skip alternatives before the one requested. */
- while (altnum > 0)
- {
- while (*constraint++ != ',');
- altnum--;
- }
- /* Scan the requested alternative for 'm' or 'o'.
- If one of them is present, this alternative accepts memory constants. */
- while ((c = *constraint++) && c != ',' && c != '#')
- if (c == 'm' || c == 'o')
- return 1;
- return 0;
- }
-
- /* Scan X for memory references and scan the addresses for reloading.
- Also checks for references to "constant" regs that we want to eliminate
- and replaces them with the values they stand for.
- We may alter X descructively if it contains a reference to such.
- If X is just a constant reg, we return the equivalent value
- instead of X. */
-
- static rtx
- find_reloads_toplev (x)
- rtx x;
- {
- register RTX_CODE code = GET_CODE (x);
-
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
-
- if (code == REG)
- {
- /* This code is duplicated for speed in find_reloads. */
- register int regno = REGNO (x);
- if (reg_equiv_constant[regno] != 0)
- x = reg_equiv_constant[regno];
- #if 0
- /* This creates (subreg (mem...)) which would cause an unnecessary
- reload of the mem. */
- else if (reg_equiv_mem[regno] != 0)
- x = reg_equiv_mem[regno];
- #endif
- else if (reg_equiv_address[regno] != 0)
- {
- x = gen_rtx (MEM, GET_MODE (x),
- reg_equiv_address[regno]);
- find_reloads_address (GET_MODE (x), 0,
- XEXP (x, 0),
- &XEXP (x, 0), x);
- }
- return x;
- }
- if (code == MEM)
- {
- rtx tem = x;
- find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0), x);
- return tem;
- }
-
- if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
- {
- /* Check for SUBREG containing a REG that's equivalent to a constant. */
- register int regno = REGNO (SUBREG_REG (x));
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- {
- /* If the constant has a known value, truncate it right now. */
- if (GET_CODE (reg_equiv_constant[regno]) == CONST_INT)
- {
- int size = GET_MODE_BITSIZE (GET_MODE (x));
- if (size < BITS_PER_WORD)
- return gen_rtx (CONST_INT, VOIDmode,
- INTVAL (reg_equiv_constant[regno])
- & ((1 << size) - 1));
- return reg_equiv_constant[regno];
- }
- /* If the constant is symbolic, allow it to be substituted normally.
- push_reload will strip the subreg later. */
- }
- /* If the subreg contains a reg that will be converted to a mem,
- convert the subreg to a narrower memref now.
- Otherwise, we would get (subreg (mem ...) ...),
- which would force reload of the mem. */
- else if (regno >= FIRST_PSEUDO_REGISTER && reg_equiv_address[regno] != 0)
- {
- int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
- rtx addr;
- #ifdef BYTES_BIG_ENDIAN
- offset += (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
- - GET_MODE_SIZE (GET_MODE (x)));
- #endif
- addr = plus_constant (reg_equiv_address[regno], offset);
- x = gen_rtx (MEM, GET_MODE (x), addr);
- find_reloads_address (GET_MODE (x), 0,
- XEXP (x, 0),
- &XEXP (x, 0), x);
- }
-
- }
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = find_reloads_toplev (XEXP (x, i));
- }
- return x;
- }
-
- static rtx
- make_memloc (ad, regno)
- rtx ad;
- int regno;
- {
- register int i;
- rtx tem = reg_equiv_address[regno];
- for (i = 0; i < n_memlocs; i++)
- if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
- return memlocs[i];
- tem = gen_rtx (MEM, GET_MODE (ad), tem);
- memlocs[n_memlocs++] = tem;
- return tem;
- }
-
- /* Record all reloads needed for handling memory address AD
- which appears in *LOC in a memory reference to mode MODE
- which itself is found in location *MEMREFLOC.
- Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
-
- OPERAND is the operand of the insn within which this address appears.
-
- Value is nonzero if this address is reloaded or replaced as a whole.
- This is interesting to the caller if the address is an autoincrement. */
-
- static int
- find_reloads_address (mode, memrefloc, ad, loc, operand)
- enum machine_mode mode;
- rtx *memrefloc;
- rtx ad;
- rtx *loc;
- rtx operand;
- {
- register int regno;
- rtx tem;
-
- if (GET_CODE (ad) == REG)
- {
- regno = REGNO (ad);
-
- if (reg_equiv_constant[regno] != 0)
- {
- if (strict_memory_address_p (mode, reg_equiv_constant[regno]))
- {
- *loc = ad = reg_equiv_constant[regno];
- return 1;
- }
- }
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- {
- if (strict_memory_address_p (mode, reg_equiv_mem[regno]))
- {
- *loc = ad = reg_equiv_mem[regno];
- return 1;
- }
- }
- #endif
- if (reg_equiv_address[regno] != 0)
- {
- rtx tem = make_memloc (ad, regno);
- push_reload (XEXP (tem, 0), 0, &XEXP (tem, 0), 0,
- BASE_REG_CLASS,
- GET_MODE (XEXP (tem, 0)), 0, VOIDmode, 0,
- operand);
- push_reload (tem, 0, loc, 0, BASE_REG_CLASS,
- GET_MODE (ad), 0, VOIDmode, 0,
- operand);
- return 1;
- }
- if (! (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- ? indirect_ok
- : REGNO_OK_FOR_BASE_P (regno)))
- {
- push_reload (ad, 0, loc, 0, BASE_REG_CLASS,
- GET_MODE (ad), 0, VOIDmode, 0, operand);
- return 1;
- }
- return 0;
- }
-
- if (strict_memory_address_p (mode, ad))
- {
- /* The address appears valid, so reloads are not needed.
- But the address may contain an eliminable register.
- This can happen because a machine with indirect addressing
- may consider a pseudo register by itself a valid address even when
- it has failed to get a hard reg.
- So do a tree-walk to find and eliminate all such regs. */
-
- /* But first quickly dispose of a common case. */
- if (GET_CODE (ad) == PLUS
- && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && GET_CODE (XEXP (ad, 0)) == REG
- && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
- return 0;
-
- subst_reg_equivs_changed = 0;
- *loc = subst_reg_equivs (ad);
-
- if (! subst_reg_equivs_changed)
- return 0;
-
- /* Check result for validity after substitution. */
- if (strict_memory_address_p (mode, ad))
- return 0;
- }
-
- /* If we have address of a stack slot but it's not valid
- (displacement is too large), compute the sum in a register. */
- if (GET_CODE (ad) == PLUS
- && (XEXP (ad, 0) == frame_pointer_rtx
- #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || XEXP (ad, 0) == arg_pointer_rtx
- #endif
- )
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- {
- /* Unshare the MEM rtx so we can safely alter it. */
- if (memrefloc)
- {
- rtx oldref = *memrefloc;
- *memrefloc = copy_rtx (*memrefloc);
- loc = &XEXP (*memrefloc, 0);
- if (operand == oldref)
- operand = *memrefloc;
- }
- if (double_reg_address_ok)
- {
- /* Unshare the sum as well. */
- *loc = ad = copy_rtx (ad);
- /* Reload the displacement into an index reg.
- We assume the frame pointer or arg pointer is a base reg. */
- push_reload (XEXP (ad, 1), 0, &XEXP (ad, 1), 0, INDEX_REG_CLASS,
- GET_MODE (ad), VOIDmode, 0, 0, operand);
- }
- else
- {
- /* If the sum of two regs is not necessarily valid,
- reload the sum into a base reg.
- That will at least work. */
- push_reload (ad, 0, loc, 0, BASE_REG_CLASS,
- GET_MODE (ad), VOIDmode, 0, 0, operand);
- }
- return 1;
- }
-
- /* See if address becomes valid when an eliminable register
- in a sum is replaced. */
-
- tem = ad;
- if (GET_CODE (ad) == PLUS)
- tem = subst_indexed_address (ad);
- if (tem != ad && strict_memory_address_p (mode, tem))
- {
- /* Ok, we win that way. Replace any additional eliminable
- registers. */
-
- subst_reg_equivs_changed = 0;
- tem = subst_reg_equivs (tem);
-
- /* Make sure that didn't make the address invalid again. */
-
- if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
- {
- *loc = tem;
- return 0;
- }
- }
-
- /* If constants aren't valid addresses, reload the constant address
- into a register. */
- if (CONSTANT_ADDRESS_P (ad) && ! strict_memory_address_p (mode, ad))
- {
- push_reload (ad, 0, loc, 0,
- BASE_REG_CLASS,
- Pmode, 0, VOIDmode, 0, operand);
- return 1;
- }
-
- return find_reloads_address_1 (ad, 0, loc, operand);
- }
-
- /* Find all pseudo regs appearing in AD
- that are eliminable in favor of equivalent values
- and do not have hard regs; replace them by their equivalents. */
-
- static rtx
- subst_reg_equivs (ad)
- rtx ad;
- {
- register RTX_CODE code = GET_CODE (ad);
- register int i;
- register char *fmt;
-
- switch (code)
- {
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case PC:
- case CC0:
- return ad;
-
- case REG:
- {
- register int regno = REGNO (ad);
-
- if (reg_equiv_constant[regno] != 0)
- {
- subst_reg_equivs_changed = 1;
- return reg_equiv_constant[regno];
- }
- }
- return ad;
-
- case PLUS:
- /* Quickly dispose of a common case. */
- if (XEXP (ad, 0) == frame_pointer_rtx
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- return ad;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
- return ad;
- }
-
- /* If ADDR is a sum containing a pseudo register that should be
- replaced with a constant (from reg_equiv_constant),
- return the result of doing so, and also apply the associative
- law so that the result is more likely to be a valid address.
- (But it is not guaranteed to be one.)
-
- In all other cases, return ADDR. */
-
- static rtx
- subst_indexed_address (addr)
- rtx addr;
- {
- rtx const_part = 0;
- rtx var_part = 0;
- int regno;
-
- if (GET_CODE (addr) == PLUS)
- {
- if (CONSTANT_P (XEXP (addr, 0)))
- const_part = XEXP (addr, 0),
- var_part = XEXP (addr, 1);
- else if (CONSTANT_P (XEXP (addr, 1)))
- const_part = XEXP (addr, 1),
- var_part = XEXP (addr, 0);
- else
- var_part = addr;
-
- if (const_part && GET_CODE (const_part) == CONST)
- const_part = XEXP (const_part, 0);
-
- if (GET_CODE (var_part) == REG
- && (regno = REGNO (var_part)) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- return (const_part
- ? gen_rtx (CONST, VOIDmode,
- gen_rtx (PLUS, Pmode, const_part,
- reg_equiv_constant[regno]))
- : reg_equiv_constant[regno]);
-
- if (GET_CODE (var_part) != PLUS)
- return addr;
-
- if (GET_CODE (XEXP (var_part, 0)) == REG
- && (regno = REGNO (XEXP (var_part, 0))) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- return gen_rtx (PLUS, Pmode, XEXP (var_part, 1),
- (const_part
- ? gen_rtx (CONST, VOIDmode,
- gen_rtx (PLUS, Pmode, const_part,
- reg_equiv_constant[regno]))
- : reg_equiv_constant[regno]));
-
- if (GET_CODE (XEXP (var_part, 1)) == REG
- && (regno = REGNO (XEXP (var_part, 1))) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- return gen_rtx (PLUS, Pmode, XEXP (var_part, 0),
- (const_part
- ? gen_rtx (CONST, VOIDmode,
- gen_rtx (PLUS, Pmode, const_part,
- reg_equiv_constant[regno]))
- : reg_equiv_constant[regno]));
- }
- return addr;
- }
-
- /* Record the pseudo registers we must reload into hard registers
- in a subexpression of a would-be memory address, X.
- (This function is not called if the address we find is strictly valid.)
- CONTEXT = 1 means we are considering regs as index regs,
- = 0 means we are considering them as base regs.
-
- OPERAND is the operand of the insn within which this address appears.
-
- We return nonzero if X, as a whole, is reloaded or replaced. */
-
- /* Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
- Also, this is not fully machine-customizable; it works for machines
- such as vaxes and 68000's and 32000's, but other possible machines
- could have addressing modes that this does not handle right. */
-
- static int
- find_reloads_address_1 (x, context, loc, operand)
- rtx x;
- int context;
- rtx *loc;
- rtx operand;
- {
- register RTX_CODE code = GET_CODE (x);
-
- if (code == PLUS)
- {
- register rtx op0 = XEXP (x, 0);
- register rtx op1 = XEXP (x, 1);
- register RTX_CODE code0 = GET_CODE (op0);
- register RTX_CODE code1 = GET_CODE (op1);
- if (code0 == MULT || code0 == SIGN_EXTEND || code1 == MEM)
- {
- find_reloads_address_1 (op0, 1, &XEXP (x, 0), operand);
- find_reloads_address_1 (op1, 0, &XEXP (x, 1), operand);
- }
- else if (code1 == MULT || code1 == SIGN_EXTEND || code0 == MEM)
- {
- find_reloads_address_1 (op0, 0, &XEXP (x, 0), operand);
- find_reloads_address_1 (op1, 1, &XEXP (x, 1), operand);
- }
- else if (code0 == CONST_INT || code0 == CONST
- || code0 == SYMBOL_REF || code0 == LABEL_REF)
- {
- find_reloads_address_1 (op1, 0, &XEXP (x, 1), operand);
- }
- else if (code1 == CONST_INT || code1 == CONST
- || code1 == SYMBOL_REF || code1 == LABEL_REF)
- {
- find_reloads_address_1 (op0, 0, &XEXP (x, 0), operand);
- }
- else if (code0 == REG && code1 == REG)
- {
- if (REG_OK_FOR_INDEX_P (op0)
- && REG_OK_FOR_BASE_P (op1))
- return 0;
- else if (REG_OK_FOR_INDEX_P (op1)
- && REG_OK_FOR_BASE_P (op0))
- return 0;
- else if (REG_OK_FOR_BASE_P (op1))
- find_reloads_address_1 (op0, 1, &XEXP (x, 0), operand);
- else if (REG_OK_FOR_BASE_P (op0))
- find_reloads_address_1 (op1, 1, &XEXP (x, 1), operand);
- else if (REG_OK_FOR_INDEX_P (op1))
- find_reloads_address_1 (op0, 0, &XEXP (x, 0), operand);
- else if (REG_OK_FOR_INDEX_P (op0))
- find_reloads_address_1 (op1, 0, &XEXP (x, 1), operand);
- else
- {
- find_reloads_address_1 (op0, 1, &XEXP (x, 0), operand);
- find_reloads_address_1 (op1, 0, &XEXP (x, 1), operand);
- }
- }
- else if (code0 == REG)
- {
- find_reloads_address_1 (op0, 1, &XEXP (x, 0), operand);
- find_reloads_address_1 (op1, 0, &XEXP (x, 1), operand);
- }
- else if (code1 == REG)
- {
- find_reloads_address_1 (op1, 1, &XEXP (x, 1), operand);
- find_reloads_address_1 (op0, 0, &XEXP (x, 0), operand);
- }
- }
- else if (code == POST_INC || code == POST_DEC
- || code == PRE_INC || code == PRE_DEC)
- {
- if (GET_CODE (XEXP (x, 0)) == REG)
- {
- register int regno = REGNO (XEXP (x, 0));
- int value = 0;
-
- /* A register that is incremented cannot be constant! */
- if (regno >= FIRST_PSEUDO_REGISTER
- && reg_equiv_constant[regno] != 0)
- abort ();
-
- /* Handle a register that is equivalent to a memory location
- which cannot be addressed directly. */
- if (reg_equiv_address[regno] != 0)
- {
- rtx tem = make_memloc (XEXP (x, 0), regno);
- /* First reload the memory location's address. */
- push_reload (XEXP (tem, 0), 0, &XEXP (tem, 0), 0,
- BASE_REG_CLASS,
- GET_MODE (XEXP (tem, 0)), 0, VOIDmode, 0,
- operand);
- /* Put this inside a new increment-expression. */
- x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
- /* Proceed to reload that, as if it contained a register. */
- }
-
- /* If we have a hard register that is ok as an index,
- don't make a reload. If an autoincrement of a nice register
- isn't "valid", it must be that no autoincrement is "valid".
- If that is true and something made an autoincrement anyway,
- this must be a special context where one is allowed.
- (For example, a "push" instruction.)
- We can't improve this address, so leave it alone. */
-
- /* Otherwise, reload the autoincrement into a suitable hard reg
- and record how much to increment by. */
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if ((regno >= FIRST_PSEUDO_REGISTER
- || !(context ? REGNO_OK_FOR_INDEX_P (regno)
- : REGNO_OK_FOR_BASE_P (regno))))
- {
- register rtx link;
-
- int reloadnum
- = push_reload (x, 0, loc, 0,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), GET_MODE (x), VOIDmode, 0, operand);
- reload_inc[reloadnum]
- = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
-
- value = 1;
-
- /* Update the REG_INC notes. */
-
- for (link = REG_NOTES (this_insn);
- link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && REGNO (XEXP (link, 0)) == REGNO (XEXP (x, 0)))
- push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
- }
- return value;
- }
- }
- else if (code == REG)
- {
- register int regno = REGNO (x);
-
- if (reg_equiv_constant[regno] != 0)
- {
- push_reload (reg_equiv_constant[regno], 0, loc, 0,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), 0, VOIDmode, 0, operand);
- return 1;
- }
-
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- {
- push_reload (reg_equiv_mem[regno], 0, loc, 0,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), 0, VOIDmode, 0, operand);
- return 1;
- }
- #endif
- if (reg_equiv_address[regno] != 0)
- {
- x = make_memloc (x, regno);
- push_reload (XEXP (x, 0), 0, &XEXP (x, 0), 0,
- BASE_REG_CLASS,
- GET_MODE (XEXP (x, 0)), 0, VOIDmode, 0, operand);
- }
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if ((regno >= FIRST_PSEUDO_REGISTER
- || !(context ? REGNO_OK_FOR_INDEX_P (regno)
- : REGNO_OK_FOR_BASE_P (regno))))
- {
- push_reload (x, 0, loc, 0,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), 0, VOIDmode, 0, operand);
- return 1;
- }
- }
- else
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- find_reloads_address_1 (XEXP (x, i), context, &XEXP (x, i), operand);
- }
- }
-
- return 0;
- }
-
- /* Substitute into X the registers into which we have reloaded
- the things that need reloading. The array `replacements'
- says contains the locations of all pointers that must be changed
- and says what to replace them with.
-
- Return the rtx that X translates into; usually X, but modified. */
-
- void
- subst_reloads ()
- {
- register int i;
-
- for (i = 0; i < n_replacements; i++)
- {
- register struct replacement *r = &replacements[i];
- register rtx reloadreg = reload_reg_rtx[r->what];
- if (reloadreg)
- {
- /* Encapsulate RELOADREG so its machine mode matches what
- used to be there. */
- if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
- reloadreg = gen_rtx (SUBREG, r->mode, reloadreg, 0);
- *r->where = reloadreg;
- }
- /* If reload got no reg and isn't optional, something's wrong. */
- else if (! reload_optional[r->what])
- abort ();
- }
- }
-
- #if 0
-
- /* [[This function is currently obsolete, now that volatility
- is represented by a special bit `volatil' so VOLATILE is never used;
- and UNCHANGING has never been brought into use.]]
-
- Alter X by eliminating all VOLATILE and UNCHANGING expressions.
- Each of them is replaced by its operand.
- Thus, (PLUS (VOLATILE (MEM (REG 5))) (CONST_INT 4))
- becomes (PLUS (MEM (REG 5)) (CONST_INT 4)).
-
- If X is itself a VOLATILE expression,
- we return the expression that should replace it
- but we do not modify X. */
-
- static rtx
- forget_volatility (x)
- register rtx x;
- {
- enum rtx_code code = GET_CODE (x);
- register char *fmt;
- register int i;
- register rtx value = 0;
-
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST:
- case REG:
- case CC0:
- case PC:
- return x;
-
- case VOLATILE:
- case UNCHANGING:
- return XEXP (x, 0);
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = forget_volatility (XEXP (x, i));
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- XVECEXP (x, i, j) = forget_volatility (XVECEXP (x, i, j));
- }
- }
-
- return x;
- }
-
- #endif
-
- /* Check the insns before INSN to see if there is a suitable register
- containing the same value as GOAL.
- If OTHER is -1, look for a register in class CLASS.
- Otherwise, just see if register number OTHER shares GOAL's value.
-
- Return an rtx for the register found, or zero if none is found.
-
- If RELOAD_REG_P is (short *)1,
- we reject any hard reg that appears in reload_reg_rtx
- because such a hard reg is also needed coming into this insn.
-
- If RELOAD_REG_P is any other nonzero value,
- it is a vector indexed by hard reg number
- and we reject any hard reg whose element in the vector is nonnegative
- as well as any that appears in reload_reg_rtx.
-
- If GOAL is zero, then GOALREG is a register number; we look
- for an equivalent for that register.
-
- MODE is the machine mode of the value we want an equivalence for.
- If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
-
- This function is used by jump.c as well as in the reload pass.
-
- If GOAL is a PLUS, we assume it adds the stack pointer to a constant. */
-
- rtx
- find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
- register rtx goal;
- rtx insn;
- enum reg_class class;
- register int other;
- short *reload_reg_p;
- int goalreg;
- enum machine_mode mode;
- {
- register rtx p = insn;
- rtx valtry, value, where;
- register rtx pat;
- register int regno = -1;
- int valueno;
- int goal_mem = 0;
- int goal_const = 0;
- int goal_mem_addr_varies = 0;
- int nregs;
- int valuenregs;
-
- if (goal == 0)
- regno = goalreg;
- else if (GET_CODE (goal) == REG)
- regno = REGNO (goal);
- else if (GET_CODE (goal) == MEM)
- {
- enum rtx_code code = GET_CODE (XEXP (goal, 0));
- if (MEM_VOLATILE_P (goal))
- return 0;
- if (flag_float_store
- && (GET_MODE (goal) == DFmode || GET_MODE (goal) == SFmode))
- return 0;
- /* An address with side effects must be reexecuted. */
- switch (code)
- {
- case POST_INC:
- case PRE_INC:
- case POST_DEC:
- case PRE_DEC:
- return 0;
- }
- goal_mem = 1;
- }
- else if (CONSTANT_P (goal))
- goal_const = 1;
- else
- return 0;
-
- /* On some machines, certain regs must always be rejected
- because they don't behave the way ordinary registers do. */
-
- #ifdef OVERLAPPING_REGNO_P
- if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
- && OVERLAPPING_REGNO_P (regno))
- return 0;
- #endif
-
- /* Scan insns back from INSN, looking for one that copies
- a value into or out of GOAL.
- Stop and give up if we reach a label. */
-
- while (1)
- {
- p = PREV_INSN (p);
- if (p == 0 || GET_CODE (p) == CODE_LABEL)
- return 0;
- if (GET_CODE (p) == INSN
- /* If we don't want spill regs (true for all calls in this file) */
- && (! (reload_reg_p != 0 && reload_reg_p != (short *)1)
- /* then ignore insns introduced by reload; they aren't useful
- and can cause results in reload_as_needed to be different
- from what they were when calculating the need for spills.
- If we notice an input-reload insn here, we will reject it below,
- but it might hide a usable equivalent. That makes bad code.
- It may even abort: perhaps no reg was spilled for this insn
- because it was assumed we would find that equivalent. */
- || INSN_UID (p) < reload_first_uid))
- {
- pat = PATTERN (p);
- /* First check for something that sets some reg equal to GOAL. */
- if (GET_CODE (pat) == SET
- && ((regno >= 0
- && GET_CODE (SET_SRC (pat)) == REG
- && REGNO (SET_SRC (pat)) == regno
- && GET_CODE (valtry = SET_DEST (pat)) == REG)
- ||
- (regno >= 0
- && GET_CODE (SET_DEST (pat)) == REG
- && REGNO (SET_DEST (pat)) == regno
- && GET_CODE (valtry = SET_SRC (pat)) == REG)
- ||
- (goal_const && rtx_equal_p (SET_SRC (pat), goal)
- && GET_CODE (valtry = SET_DEST (pat)) == REG)
- || (goal_mem
- && GET_CODE (valtry = SET_DEST (pat)) == REG
- && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
- || (goal_mem
- && GET_CODE (valtry = SET_SRC (pat)) == REG
- && rtx_renumbered_equal_p (goal, SET_DEST (pat)))))
- if (valueno = REGNO (valtry),
- other >= 0
- ? valueno == other
- : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- valueno)))
- {
- value = valtry;
- where = p;
- break;
- }
- }
- }
-
- /* We found a previous insn copying GOAL into a suitable other reg VALUE
- (or copying VALUE into GOAL, if GOAL is also a register).
- Now verify that VALUE is really valid. */
-
- /* VALUENO is the register number of VALUE; a hard register. */
-
- /* Don't find the sp as an equiv, since pushes that we don't notice
- would invalidate it. */
- if (valueno == STACK_POINTER_REGNUM)
- return 0;
-
- /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
- if (GET_MODE (value) != mode)
- return 0;
-
- /* Reject VALUE if it was loaded from GOAL
- and is also a register that appears in the address of GOAL. */
-
- if (goal_mem && value == SET_DEST (PATTERN (where))
- && refers_to_regno_p (valueno,
- valueno + HARD_REGNO_NREGS (valueno, mode),
- goal, 0))
- return 0;
-
- /* Reject VALUE if it is one of the regs reserved for reloads.
- Reload1 knows how to reuse them anyway, and it would get
- confused if we allocated one without its knowledge.
- (Now that insns introduced by reload are ignored above,
- this case shouldn't happen, but I'm not positive.) */
-
- if (reload_reg_p != 0 && reload_reg_p != (short *)1
- && reload_reg_p[valueno] >= 0)
- return 0;
-
- /* On some machines, certain regs must always be rejected
- because they don't behave the way ordinary registers do. */
-
- #ifdef OVERLAPPING_REGNO_P
- if (OVERLAPPING_REGNO_P (valueno))
- return 0;
- #endif
-
- nregs = HARD_REGNO_NREGS (regno, mode);
- valuenregs = HARD_REGNO_NREGS (valueno, mode);
-
- /* Reject VALUE if it is a register being used for an input reload
- even if it is not one of those reserved. */
-
- if (reload_reg_p != 0)
- {
- int i;
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_rtx[i] != 0 && reload_in[i])
- {
- int regno1 = REGNO (reload_reg_rtx[i]);
- int nregs1 = HARD_REGNO_NREGS (regno1,
- GET_MODE (reload_reg_rtx[i]));
- if (regno1 < valueno + valuenregs
- && regno1 + nregs1 > valueno)
- return 0;
- }
- }
-
- if (goal_mem)
- goal_mem_addr_varies = rtx_addr_varies_p (goal);
-
- /* Now verify that the values of GOAL and VALUE remain unaltered
- until INSN is reached. */
-
- p = insn;
- while (1)
- {
- p = PREV_INSN (p);
- if (p == where)
- return value;
-
- /* Don't trust the conversion past a function call
- if either of the two is in a call-clobbered register, or memory. */
- if (GET_CODE (p) == CALL_INSN
- && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
- && call_used_regs[regno])
- ||
- (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
- && call_used_regs[valueno])
- ||
- goal_mem))
- return 0;
-
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CALL_INSN)
- {
- /* If this insn P stores in either GOAL or VALUE, return 0.
- If GOAL is a memory ref and this insn writes memory, return 0.
- If GOAL is a memory ref and its address is not constant,
- and this insn P changes a register, return 0.
- That is in lieue of checking whether GOAL uses this register. */
-
- pat = PATTERN (p);
- if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
- {
- register rtx dest = SET_DEST (pat);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (GET_CODE (dest) == REG)
- {
- register int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
- else
- xnregs = 1;
- if (xregno < regno + nregs && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies)
- return 0;
- }
- else if (goal_mem && GET_CODE (dest) == MEM
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- else if (GET_CODE (pat) == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- {
- register rtx v1 = XVECEXP (pat, 0, i);
- if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
- {
- register rtx dest = SET_DEST (v1);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (GET_CODE (dest) == REG)
- {
- register int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
- else
- xnregs = 1;
- if (xregno < regno + nregs
- && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies)
- return 0;
- }
- else if (goal_mem && GET_CODE (dest) == MEM
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- }
- }
- /* If this insn auto-increments or auto-decrements
- either regno or valueno, return 0 now.
- If GOAL is a memory ref and its address is not constant,
- and this insn P increments a register, return 0.
- That is in lieue of checking whether GOAL uses this register. */
- {
- register rtx link;
-
- for (link = REG_NOTES (p); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC)
- {
- register int incno = REGNO (XEXP (link, 0));
- if (incno < regno + nregs && incno >= regno)
- return 0;
- if (incno < valueno + valuenregs && incno >= valueno)
- return 0;
- if (goal_mem_addr_varies)
- return 0;
- }
- }
- }
- }
- }
-
- /* Find a place where INCED appears in an increment or decrement operator
- within X, and return the amount INCED is incremented or decremented by.
- The value is always positive. */
-
- static int
- find_inc_amount (x, inced)
- rtx x, inced;
- {
- register enum rtx_code code = GET_CODE (x);
- register char *fmt;
- register int i;
-
- if (code == MEM)
- {
- register rtx addr = XEXP (x, 0);
- if ((GET_CODE (addr) == PRE_DEC
- || GET_CODE (addr) == POST_DEC
- || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_INC)
- && XEXP (addr, 0) == inced)
- return GET_MODE_SIZE (GET_MODE (x));
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- register int tem = find_inc_amount (XEXP (x, i), inced);
- if (tem != 0)
- return tem;
- }
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
- if (tem != 0)
- return tem;
- }
- }
- }
-
- return 0;
- }
-